Halász's theorem for Beurling generalized numbers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GENERALIZED PRINCIPAL IDEAL THEOREM FOR MODULES

The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we extend the Generalized Principal Ideal Theorem to modules.

متن کامل

Class Numbers and a Generalized Fermat Theorem

The purpose of this paper is twofold. In the first section we provide sufficient conditions for the divisibility of the class number of certain algebraic number fields by prime powers and applications thereof. We were initially inspired in this regard by Watabe [ 111, wherein some of the results are false thereby leading to the above. In the second section we generalize Fermat’s well-known “two...

متن کامل

On the Beurling–Lax theorem for domains with one hole

We consider pure subnormal operators T of the type studied in Carlsson, 2011, with the additional requirement that σ(T ) has one hole. If ind (T − λ0) = −n for some λ0 and n ∈ N, we show that the operator can be decomposed as T = ⊕k=1Tk, where each Tk satisfies ind (T − λ0) = −1, thus extending the classical Beurling–Lax theorem (in which σ(T ) is the unit disc). We also provide a set of unitar...

متن کامل

A Beurling-helson Type Theorem for Modulation Spaces

We prove a Beurling-Helson type theorem on modulation spaces. More precisely, we show that the only C changes of variables that leave invariant the modulation spaces M(R) are affine functions on R. A special case of our result involving the Sjöstrand algebra was considered earlier by A. Boulkhemair.

متن کامل

Kernel Theorem for the Space of Beurling - Komatsu Tempered Ultradistibutions

We give a simple proof of the Kernel theorem for the space of tempered ultradistributions of Beurling Komatsu type, using the characterization of Fourier-Hermite coefficients of the elements of the space. We prove in details that the test space of tempered ultradistributions of Beurling Komatsu type can be identified with the space of sequences of ultrapolynomal falloff and its dual space with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2020

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa190210-22-5